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Abstract
Tuberculosis is a chronic infectious disease caused by
Mycobacterium tuberculosis and classified as pulmonary
and extrapulmonary based on their site of infection. Anti-
tuberculosis drugs developed since the 1940s and as their
discovery resistance also developed against them. World
health organization recognized tuberculosis as emergency
public health in 1993.

Acquired and primary drug resistances are the common
pathways for the development of anti-tuberculosis drug
resistance. Acquired drug resistance is the result of
inappropriate treatment, poor quality of the drugs and
inadequate drug intake and primary drug resistance is due
to exposure to the drug-resistant anti-tuberculosis. Types of
anti-tuberculosis drug-resistant are multidrug-resistant
tuberculosis is the result of resistance to isoniazid and
rifampicin, extensively drug-resistant tuberculosis a
consequence of resistance to isoniazid, rifampicin,
fluoroquinolones and one of the second-line injectable
drugs and totally drug-resistant tuberculosis is a resistance
to all first and second-line anti-tuberculosis drugs.

Anti-tuberculosis drugs primarily actions are on protein
synthesis, mycolic acid synthesis, DNA synthesis, folic acid
synthesis, and ATP synthase. These drugs could produce
bacteriostatic or bactericidal effects on the mycobacteria.
The main resistance mechanism to the anti-tuberculosis
drug is the mutation of the target gene accountable for the
action of anti-tuberculosis drugs. This resistance to the anti-
tuberculosis drug produces a devastating effect on public
health. Therefore, further study should be conducted in the
areas of finding a new target for the development of new
anti-tuberculosis drugs.
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Introduction
Tuberculosis is a chronic infectious and zoonotic disease

caused by the Mycobacterium tuberculosis complex. It is
accountable for a lung infection (pulmonary tuberculosis) and
other body parts (extrapulmonary tuberculosis). Anti-
tuberculosis drugs emerged since the 1940s and dramatically
reduce mortality rates. In spite of highly efficacious treatment
tuberculosis stay as a most public health constraint. Tuberculosis
is ranked as the second cause of the mortality next to HIV
infection. Tuberculosis declared as a global public health
emergency since 1993 at a time of estimated 7-8 million cases
and 1.3-1.6 million deaths occurred annually. In 2010 there were
8.8 million new cases of tuberculosis and 1.1 million deaths from
tuberculosis among HIV negative and 0.35 million deaths from
that HIV-associated tuberculosis and it is exacerbated due to the
development of anti-tuberculosis drug resistance [1].

The emergence of resistance against anti-tuberculosis drug is
the obstacle for the effectiveness of the treatment. Moreover,
resistance to anti-tuberculosis drugs is a natural phenomenon
occurring against Mycobacterium tuberculosis by the
spontaneous chromosomal mutations. Inadequate tuberculosis
treatment is accountable for the occurrence of drug-resistant
Mycobacterium tuberculosis. Even single chromosomal
mutations direct the resistance to two or more anti-tuberculosis
drugs [2].

World health organization report of 2009 ranked Ethiopia
seventh in the world and third in Africa for the burden of
tuberculosis in 2008. In Ethiopia estimated incidence of 378 new
cases per 100,000 persons, 163 new smear-positive cases per
100,000 persons and prevalence of 579 per 100,000 populations
[3]. Ethiopia registered 146,172 cases of tuberculosis in the year
of 2009/10. Among these new cases of 139,261; new smear-
positive 46,132 (33.1%); new smear-negative 49,037 (35.2%)
and extrapulmonary tuberculosis 44,092 (31.6%) [4]. This
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confirms that Ethiopia is endemic for the tuberculosis disease.
According to drug resistance survey carried out in Ethiopia from
2003 to 2006 indicated that multidrug resistance tuberculosis is
11.8% in previously treated cases and 1.6% of newly diagnosed
tuberculosis cases; include 5,200 cases annually [5].

Therefore, the objective of this paper is to review the status
of anti-tuberculosis drug resistance.

Etiology and Routes of Transmission
Tuberculosis is an infectious disease caused by

Mycobacterium tuberculosis complex. This complex includes M.
tuberculosis (including subspecies M. canetti), M. bovis, M. bovis
BCG, M. africanum, M. caprae, M. microti and M. pinnipedii [6].
Cough of a tuberculosis patient is a source of Mycobacterium
tuberculosis and it disseminate to air during coughing. The
persons who have inhaled air droplet and contact with TB
patient become infected [7].

Epidemiology and Associated Factors of
Tuberculosis

Tuberculosis is determined by the presence of poverty,
malnutrition, overcrowding and incomplete health care system
which are the predisposing factors [8]. In the latest time patients
developing active tuberculosis is an estimated 9.6 million
persons and 1.5 million deaths annually [8,9]. For instance,
across the different countries the incidence of tuberculosis
changes; in Western Europe 5 per 100,000 persons, whereas,
800 per 100,000 in South Africa [10]. According to the WHO, 5%
of all new tuberculosis cases are due to multidrug-resistant
tuberculosis. Moreover, MDR TB prevalence varies from region
to regions. For example, MDR TB in eastern Europe and central
Asia reaches up to 48% [9,11].

The two common pathways that lead to drug-resistant
tuberculosis are acquired and primary drug resistance. Acquired
drug resistance is resulted from inappropriate treatment, in the
adequate or poor quality of drugs and inadequate drug intake in
the presence of drug-susceptible tuberculosis. In the case of
primary drug resistance direct exposure to the drug-resistant
anti-tuberculosis. However, tuberculosis transmission or
progression is prevented by various factors such as infection
control and environmental interventions, good host immunity,
latent tuberculosis treatment and high-quality diagnosis,
treatment, patient support and management of drug-resistant
tuberculosis [2,12]. While the increased transmission rate of
drug-resistant tuberculosis aggravates the magnitude of
tuberculosis burden [13].

Multidrug-resistant tuberculosis is resistant to isoniazid and
rifampicin, but with or without resistance to other first-line
drugs [14]. Extensive drug-resistant tuberculosis is resistant to
isoniazid, rifampicin, and fluoroquinolones and any one of three-
second line injectables (kanamycin, amikacin, and capreomycin).
It is reported in 2006 as a severe form of tuberculosis [14,15].
Totally drug-resistant tuberculosis is a resistance to all first and
second-line anti-tuberculosis drugs and it is reported after one
year of extensive drug-resistant described. However, total drug-

resistant tuberculosis definition still it is not recognized by the
World Health Organization [14].

Extensively drug-resistant and totally drug-resistant
tuberculosis developed as a consequence of failure to identify
an appropriate treatment of multidrug-resistant tuberculosis
patients [15,16]. The first case of totally drug-resistant
tuberculosis reported in the USA from the patient who went to
the USA to study English [17]. After that, it is reported in
different places including Italy, Iran, India, and South Africa
[18-21] Among the total cases of multidrug-resistant
tuberculosis strains 10% are total drug-resistant tuberculosis
[14].

Pathogenesis
Infection due to Mycobacterium tuberculosis could be an

active or latent infection. Active infection is characterized by a
wide range of granulomatous structures that includes bacterial
laden, necrotic (caseating) lesions and central liquefaction,
whereas latent infection is characterized by fibrotic and calcified
lesions [22]. Mechanism of granulomatous lesions development
is by the small and aerosolized particles of Mycobacterium
tuberculosis reaches alveoli via inhalation then transported to
tissue with the help of macrophages form aggregation with
immune cells [23]. Disease development in
immunocompromised and immunocompetent persons is
different as consequences of immunocompromised persons
develop poorly organized and noncaseating lesions, whilst
immunocompetent persons produce a highly organized,
caseating and cavitary lesions [24].

Drugs Used for Treatment of Tuberculosis
and their Mechanism of Actions

Drugs used for the treatment tuberculosis classified as first
and second line and new TB drugs based on their potency and
safety issues.

First-line drugs
Isoniazid: Isoniazid commenced as an anti-tuberculosis drug

since 1952 and act as a bactericidal and bacteriostatic for rapidly
and slowly growing bacilli, respectively. It is also named as
isonicotinic hydrazide and diffuses across Mycobacterium
tuberculosis cell membrane [25]. The targets of isoniazid are
KatG and inhA gene. KatG gene encodes two enzymes called
catalase/peroxidase enzyme that activates prodrug and
peroxynitrite involved in pathways of reactive nitrogen and
oxygen intermediates [26,27]. InhA gene encodes NADH-
dependent enoyl-Acyl Carrier Protein (ACP)-reductase that
inhibits mycolic acid synthesis [28,29].

Rifampicin: Rifampicin was isolated from Streptomyces
mediterranei in 1957 from soil sample at Lepetit Research
Laboratories of France and used as an anti-tuberculosis agent
since 1972 [30]. It is still utilized as the best choice of anti-
tuberculosis drug. Rifampicin is lipophilic and diffuses across the
cell membrane of Mycobacterium tuberculosis. The primarily
targeted rpoB of DNA dependent-RNA polymerase β subunit and
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rpoB uses four ribonucleotide triphosphates as substrates to
catalyze transcription of DNA into mRNA. Rifampicin binds to the
β subunit of DNA dependent-RNA polymerase and inhibits
transcription of mycobacteria [31-34].

Ethambutol: Ethambutol is active against growing bacilli
because of its bacteriostatic nature and commenced as an anti-
tuberculosis drug since 1966. It hampers polymerization of cell
wall component arabinogalactan and lipoarabinomannan and
results in a buildup of intermediate arabinan biosynthesis D-
arabinofuranosyl-P-decaprenol and bacteriostatic effect [35,36].
Arabinosyl transferase enzyme is a target for the action of
ethambutol in both Mycobacterium tuberculosis and
Mycobacterium avium. The enzyme is encoded by the embCAB
gene organized as an operon and engaged in the
arabinogalactan synthesis [37,38].

Pyrazinamide: Pyrazinamide activity against Mycobacterium
tuberculosis depends on the acidity and anaerobic conditions
[32]. It is activated to pyrazines acid by enzyme pyrazinamide/
nicotinamidase that encoded by gene pncA [39]. Acidic
condition favors the formation of protonated pyrazinoic acid
that passes via a membrane and accumulated in the cell
membrane of Mycobacterium tuberculosis which interrupts cell
membrane potential and alters membrane transport [40]. RpsA
gene encodes 30S ribosomal protein S1 responsible for the
mRNA translation [41]. Gene panD participates in pantothenate
biosynthesis by converting L-aspartate into beta-alanine [42].
Pyrazinamide new target, clpC1 (Rv3596c) that encode an ATP
dependent ATPase is responsible for protein degradation by
complex formation with protease clpP1 and clpP2 [43].

Streptomycin: Streptomycin isolated from the soil
microorganism Streptomyces griseus in 1943 and the first
antibiotic cure for tuberculosis [44,45]. It is active against
growing bacilli, but not against non-growing or intracellular
bacilli [46]. It targets both rpsl and rrs genes that encode 30S
ribosomal protein S12 and 16S rRNA, respectively and finally
inhibit the instigation of the translation in the protein synthesis
[47,48].

Second-line drugs
Para-amino salicylic acid: There are two mechanisms of

action for para-amino salicylic acid to produce the desired
action. Firstly, inhibit folic acid synthesis by the action of
dihydropteroate synthase and dihydrofolate synthase that
generates hydroxyl dihydrofolate antimetabolite which inhibits
dihydrofolate reductase enzyme responsible for the synthesis of
folic acid [49]. Secondly, inhibit cell wall component mycobactin
synthesis by reducing uptake of iron [32].

Ethionamide: Two genes play a role in the mechanism of
actions ethionamide are ethA and inhA. EthA regulated by the
transcriptional repressor ethR [50]. The mechanism of action of
the ethionamide is a disruption of mycolic acid synthesis by
which monooxygenase enzyme activated ethionamide that
binds to NAD+ and forms an adduct which inhibits enoyl acyl-
ACP reductase enzyme [51-54].

Cycloserine: Cycloserine is a product of the cyclic derivative of
serine hydroxamic acid and terizidone and isolated from

Streptomyces orchidaceous in the 1950s. Cycloserine mechanism
of action is by interfering with mycobacterial cell wall synthesis
through inhibition of L-alanine racemase enzyme encoded by
alrA that produce D-alanine from L-alanine and D-phenylalanine
synthetase enzyme indispensable for the formation of
peptidoglycan and cell wall synthesis by incorporation of D-
alanine into pentapeptide [55-57].

Fluoroquinolones: Fluoroquinolones discovered as a
derivative of chloroquine antimalarial drug in the 1960s and
used in human and veterinary medicine as a bactericidal agent
[58]. Mechanism of action of the fluoroquinolones is primarily
depended on the blocking of mycobacterial DNA replication by
binding to α and β subunits of DNA gyrase (gyrA and gyrB),
which catalyze the supercoiling of DNA and finally, inhibits DNA
synthesis [59,60].

Aminoglycosides and polypeptides: This group includes
aminoglycosides (kanamycin, amikacin) and polypeptides
(capreomycin, viomyocin). The common features of these
antibiotics are their mechanism of action inhibiting protein
synthesis. Kanamycin and amikacin alter 16S rRNA and
capreomycin and viomycin interfere with small and large
subunits of the 70S ribosome [61-63].

Linezolid: Linezolid is a group of oxazolidinone that interrupt
an early step in protein synthesis through binding to the
assembly of the 23S ribosomal RNA of the 50S subunit. The gene
rplC and rrl are involved in the mechanical action of Linezolid.
The rplC gene possesses 654 bp in length that encodes 50S
ribosomal L3 protein to contribute to the synthesis of the
ribosomal peptidyltransferase. Hence, rrl gene possesses 3138
bp length that encodes 23S ribosomal RNA [64].

Newer TB drugs
Newer tuberculosis drugs emerged against MDR TB because

of the discovery of the novel targets in the Mycobacterium
tuberculosis.

Bedaquiline or TMC207: Bedaquiline is a member of
diarylquinolines and bactericidal. ATP demanded by
mycobacteria is generated by the atpE gene by encoding subunit
C of the ATP synthase. Mechanism of action of the bedaquiniline
involves blocking the proton pump of ATP synthase of
Mycobacterium tuberculosis then depletes energy demand of
both non replicating (dormant) and replicating mycobacteria
and at the end result in cell death [65,66].

Delamanid or OPC 67683: Mycobacterial F420 coenzyme
system component deazaflavin dependent nitroreductase and
F420-dependent glucose 6-phosphate dehydrogenase enzyme
are encoded by F420 coenzyme genes ddn and fgd1 gene,
respectively [25,57]. Delamanid is a derivative of
dihydronitroimidazooxazole and activated by deazaflavin
dependent nitroreductase enzyme (Rv3547). Delamanid acts
through interrupting the synthesis of the mycobacterial cell wall
component. By means of radical intermediate produced during
activation of delamanid between desnitroimidazooxazole
derivative and delamanid inhibit the synthesis of methoxy-and
keto-mycolic acid which is a crucial component of the
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mycobacterial cell wall. It is active against growing and non-
growing mycobacteria [67,68].

PA-824: PA-824 is a derivative of nitroimidazole and activated
by deazaflavin dependent nitroreductase enzyme as that of
delamanid. Mechanism action of PA-824 is not clear but could
be described as its’  activity in replicating and non-replicating
mycobacteria. In aerobically replicating mycobacterial cell
PA-824 disrupts mycolic acid synthesis by the accumulation of
hydroxymycolates instead of ketomycolates [67,69,70].
Accordingly, in hypoxic non replicating mycobacteria, PA-824
release Nitric oxide (NO) that interfere with cytochrome oxidase
to disrupt energy metabolism of the cell wall [71,72].

SQ-109: SQ-109 is a synthetic analogous of ethambutol. The
mechanism of action of the SQ-109 is not clear and has no
inhibition activity against secreted Ag85 mycolyltransferase
enzyme. Rather SQ-109 causes accumulation of trehalose
monomycolate a precursor of trehalose dimycolate by hindering
assembles of mycolic acids into the bacterial cell wall core.
Mmpl3 is a target of SQ-109 and transporter of trehalose
monomycolate of the mycobacteria [73].

Mechanism of Resistance to the Anti-
Tuberculosis Drug

Different mechanisms of resistance to anti-tuberculosis drugs
emerged because of the mycobacteria undergo several
mutations to overcome harsh environmental conditions.
Mutated genes are those responsible for the activation of anti-
TB drugs and synthesis components of Mycobacteria cell
structure.

First-line drugs
Isoniazid: Resistance to the isoniazid associated with the

mutation of KatG and inhA gene. KatG gene mutant S315T cause
multidrug resistance by reducing the ability of KatG gene that
converts isoniazid to isonicotinic acid which is a precursor for
the formation of INH-NAD adducts [74-76]. In addition, a new
KatG gene mutant L101R changes hydrophobic leucine to
hydrophilic arginine and result in conformational alteration of
protein binding site and hinders bioactivation [77].

Mutations in different positions of inhA gene regulatory
region includes -15C/T, -8T/C, -15/T and -17C/T related with
resistance [57,77-79]. Recent studies reported that mutation of
inhA regulatory region together with mutation of inhA coding
region end up in high resistance to isoniazid and cross-resistance
to ethionamide that structurally related to isoniazid [80]. In both
resistant and susceptible strain to isoniazid, mutations reported
were Rv0340-0343, fadE24, efpA and KasA that demand further
studies on their resistance mechanism [81].

Rifampicin: Site responsible for the rifampicin resistance is a
“ hot spot region ”  of 81bp of rpoB called RIF-resistance
determining the region (RRDR) that covers 507-533 codons and
principally mutation in codons of 516, 526 and 531 [82,83].
Cross-resistance to rifabutin occurred at 532 codon mutation in
the rpoB gene that changes serine to leucine [77,83,84].
Compulsatory mutation discovered in rpoA and rpoC which

encodes α and β’ subunits of RNA polymerase, respectively [85].
The importance of these compulsatory mutations is for
reinstating fitness and the emergence of multidrug-resistant
strains [86].

Ethambutol: Ethambutol resistance is originated from a
mutation of an embCAB operon that causes changes in the site
of drug-protein binding [87]. Potential ethambutol resistance
marker is the mutation of embB 306, but about 30% resistance
is not related to embB gene mutation [88-90] About 70% of
mutation in codons of 306, 406 or 497, 13% of mutation
between codons 296 and 426, 15% mutations in the embed-
embA intergenic region and mutation of ubiA gene that encode
for a decaprenylphosphoryl-5-phosphoribose (DPPR) synthase
along with mutation in embB correlated with high resistance to
ethambutol [91,92]. The Minimum Inhibitory Concentration
(MIC) of ethambutol increases due to mutations in genes of
embB, embC and genes involved in the biosynthesis and
utilization pathway of the decaprenylphosphoryl-beta-D-
arabinose (DPA) called Rv3806C and Rv3792 [93,94].

Pyrazinamide: Pyrazinamide resistance is associated with
mutations of pncA, rpsA, panD and clpP1 [95,96]. Hence,
mutations of pncA gene is majorly responsible for the resistance
that occurs especially at nucleotides of 359 and 374 and 82-262
bp regulatory regions, but no mutations detected at 561bp pncA
gene [97,98]. Deletion of alanine at 438bp and overexpression of
rpsA gene increases resistance to the Pyrazinamide [41].

Streptomycin: The primary cause of streptomycin resistance
are mutations of rpsl, gidB and rrs [99,100] Mutation in rpsl is
because of the replacement of lysine by arginine at positions 43
and 88 and in gidB conferring mutation to A80P gene product by
targeting methylguanosine methyltransferase [100]. In rrs
mostly mutations in the nucleotides 530 and 915 develop
resistance and resistance to streptomycin is occurred commonly
because of mutations in rpsl and rrs gene [101].

Second-line drugs
Para-amino salicylic acid: A mutation of Thr202Ala in thyA

gene is related with resistance to para amino salicylic acid. In
addition, mutation to folC gene is responsible for resistance.

Ethionamide: Mutations in the ethA or ethR and inhA or its
promoter result in resistance to ethionamide and isoniazid [50].
High resistance against ethionamide and isoniazid is due to
mutations in the inhA gene of -15C to -15T in the promoter
region, S94A (Serine to alanine) and I94T (Isoleucine to
threonine) [80].

Cycloserine: Cycloserine target in Mycobacterium tuberculosis
is not well studied. However, alrA overexpression results in
resistance [102].

Fluoroquinolones: Mutations of the gyrA and gyrB are
responsible for the resistance to the fluoroquinolones.
Resistance determining regions of gyrA and gyrB are 74-113 and
500-540 codons, respectively [103,104]. Mutations at different
positions of gyrA Ala-74, Gly-88, Ala-90, Ser-91 and Asp-94 end
in resistance [105]. Hence, Mutation to gyrB in clinical isolates is
less common and being low resistant to fluoroquinolones [106].
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But, synchronization of mutations of gyrA and gyrB, Ala543Val
(gyrB)-Asp94Asn/Asp94Gly (gyrA) and Asn538lle (gyrB)-
Asp94Ala (gyrA) leads to high resistance [107].

Aminoglycosides and polypeptides: It consists
aminoglycosides (kanamycin and amikacin) and polypeptides
(capreomycin and viomyocin). Mutation to rrs gene at the
position of 1,400, 1401 and 1,483 bp associated with high level
resistance to both kanamycin and amikacin [108,109]. Hence,
the mutation of rrs gene at the codon A1401G is related to high-
level resistance to the kanamycin and amikacin as well as cross-
resistance to capreomycin. In addition, resistance to the
capreomycin associated with mutation of C1402T or G1484T and
result in cross-resistance to kanamycin and viomycin [110,111].

Linezolid: Resistance to the linezolid is due to the mutation of
the target genes. The mutation T460C in rplC gene plays a great
role in the resistance to the linezolid and mutations of G2576T
and G2061T in rrl gene increases minimum inhibitory
concentrations. However, mutations of these genes account only
29.4% of linezolid resistance to the Mycobacterium tuberculosis
[112]. As a result, further study required to explore the
resistance mechanisms of linezolid.

Newer TB drugs
Bedaquiline: Mutations of A63P and I66M of atpE gene

associated with resistance to bedaquiline; mutations in Rv0678
and pepQ are observed in wild type population and it controls
the significant mechanism of clinical resistance [113].

Delamanid: Mutations in ddn and fgd1 result in resistance to
the Delamanid [114].

PA-824: The main way of resistance to the PA-824 are the
nitroimidazole-oxazine specific protein that causes structural
changes to the drug and mutations of fdg1 [70,114].

SQ-109: Mmpl3 gene mutation leads to the development of
resistance to the SQ-109 [115]. Hence, the up-regulation of ahpc
gene plays a role in the development of resistance against
isoniazid, ethambutol, and SQ-109 [116].

Management of Anti-Tuberculosis Drug
Resistance

Management of the multidrug-resistant tuberculosis is very
complex because of drugs used are toxic and administered for a
long period of time than susceptible tuberculosis accompanied
with a lower likelihood of treatment success [117]. Therefore,
the following things should be followed:

• Isoniazid and rifampicin drugs rapid susceptibility test: This
assumption is to reduce the delay to start the correct second-
line therapy and for the purpose to increase cure, decrease
mortality, reduce additional drug resistance development and
reduce the possibility of failure and relapse [118]. Gene Xpert
MTB/ RIF is sufficient to start a second line tuberculosis
regimen by the patient, but confirmation by the line probe
assay is required due to the probability of the false-positive
results

• Combinations of sputum smear microscopy and culture: This
assumption is to indicate that only the smear microscope
could lead to delayed detection of failure. Simultaneous use of
sputum smear microscopy and culture test leads to
differentiate patients bacteriologically positive or relapse back
to positive after initially converted to negative [119]

• Drugs included in the treatment regimen of multidrug-
resistant tuberculosis are fluoroquinolones, later generation
fluoroquinolones (levofloxacin, moxifloxacin) and
ethionamide. In the treatment of multidrug-resistant
tuberculosis four-second line anti-tuberculosis drugs expected
to be effective and for the intensive phase pyrazinamide
should be included. Treatment regimens of multidrug-resistant
tuberculosis include at least pyrazinamide, fluoroquinolones,
injectable or parenteral agent, ethionamide and either
cycloserine or para-aminosalicylic acid should be included
[119]

• In the treatment of the multi-drug resistant tuberculosis, an
intensive phase requires at least 8 months duration and total
treatment duration required at least 20 months for no
previous multidrug-resistant tuberculosis treatment. The main
purposes were to prevent death, the transmission of
multidrug-resistant tuberculosis, avoid harms and minimize
the use of resources. Following initiation of anti-tuberculosis
treatment with in the first 8 weeks regardless/irrespective of
CD4 cell count, antiretroviral therapy is given to all patients
with the HIV and drug-resistant tuberculosis that demand
second-line anti-tuberculosis drugs [119,120]

• In the extensively drug-resistant tuberculosis, the rate of cure
is lower than multi drug-resistant tuberculosis. Otherwise, the
principles of management are similar to the multi-drug
resistant tuberculosis. The optimum number of drugs and
duration of treatment are still uncertain. However, at least six
groups for the intensive phase and four in the continuation
phase with the highest treatment success. In addition, 6-9
months duration for the intensive phase and 20-25 months for
the total duration of treatment required [119,120]

• New drugs such as bedaquiline and delamanid and new
combination regimen enhance cure rate of extensively drug-
resistant tuberculosis. In addition, later generation of
fluoroquinolones (moxifloxacin) also significantly improved
treatment outcomes [121-127]

Conclusion and Future Prospects
Tuberculosis is a major disease that constrains public health. It

is caused by Mycobacterium tuberculosis and effective anti-
tuberculosis drugs developed against TB. These drugs are
classified as first and second line and new drugs based on their
discovery time and effectiveness. However, drug resistance
emerged because of bacteria undergoes revolution to escape
harsh environment by chromosomal mutations.

Actively developing resistance and factors that propagate
resistance development in the patient are still poorly
understood and demands further explanation. Retrieval of
mutation resistance in mycobacteria developed dynamically
under antibiotic pressure for a long time. The relationship
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between drug resistance, fitness, and virulence of the organism
requires further study.

The current rapid diagnostic gene Xpert MTB/RIF and line
probe assays are limited in their ability to produce a
comprehensive resistance profile. For this reason, rapid WGS is
the most promising utility for the drug-resistant tuberculosis
diagnosis. The main strategy to diminish drug resistance crisis is
a personalized treatment that suggests the potential to improve
treatment outcomes. It is by a means of limiting therapeutic
regimen to efficacious drugs and then reduction of unnecessary
pill burden and significantly reducing side effects of the current
treatment.
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